首页> 外文OA文献 >Resonance surface plasmon spectroscopy by tunable enhanced light transmission through nanostructured gratings and thin films
【2h】

Resonance surface plasmon spectroscopy by tunable enhanced light transmission through nanostructured gratings and thin films

机译:通过可调谐增强的光透过纳米结构的光栅和薄膜的共振表面等离子体激元光谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

urface plasmon resonance (SPR) is a powerful tool in probing interfacial events in that any changes of effective refractive index in the interface directly impact the behavior of surface plasmons, an electromagnetic wave, travelling along the interface. Surface plasmons (SPs) are generated only if the momemtum of incident light matches that of SPs in the interface. Observation of SPR can be achieved by either monitoring reflection via Kretchsmann configuration or enhanced transmission through nano-structured patterned substrates (for example, diffraction gratings). For Kretchsmann configuration, SPs resonate with particular frequencies of incident light and results in a decreased intensity in the reflection spectrum at corresponding wavelengths. For diffraction grating, enhanced transmission peaks at particular wavelengths is observed in that the SPs resonate with particular energies (eV) of incident light and tunnel through the nanostructure of gratings. This thesis focuses on tuning the behavior of SPs by changing the topology of diffraction gratings, monitoring the thickness of thin films by diffraction gratings, and use of dispersion images to analyze complex optical responses of SPs through diffraction gratings.Chapter 1 covers the background/principle of SPR, comprehensive literature review, sensor applications, control of SPR spectral responses, and sensitivity of SPR. In Chapter 2, we illustrate a chirped grating with varying surface topology along its spatial position. We demonstrated that the features of nanostructure such as pitch and amplitude significantly impact the behavior of enhanced transmission. In addition, we also illustrate the sensing application of chirped grating and the results indicate that the chirped grating is a sensitive and information rich SPR platform. In chapter 3, we used a commercial DVD diffraction grating as a SPR coupler. A camera-mounted microscope with Bertrend lens attachment is used to oberserve the enhanced transmission. We demonstrate that this system can monitor the SPR responses and track thethickness of a silicon monoxide film without using a spectrophotometer.Surface plasmons are a result of collective oscillation of free electrons in themetal/dielectric interface. Thus, the interaction of SPs with delocalized electrons from molecular resonance is complex. In chapter 4, we perform both experimental and simulation works to address this complex interaction. Detailed examination and analysis show nontypical SPR responses. For p-polarized light, a branch of dispersion curve and quenching of SPs in the Q band of zinc phthalocyanine are observed. For both p- and s-polarized light, additional waveguided modes are observed and the wavelength from different guided modes are dispersed.Diffraction gratings can provide complicated optical information about SPs. Both front side (air/metal) and back side (metal/substrate) provide SPR signals simultaneously. In chapter 5, we use dispersion images to analyze the complicated optical responses of SPR from an asymmetrical diffraction grating consisting of three layers (air/gold/polycarbonate). We illustrate that clear identification of SPR responses from several diffraction orders at front side and back side can be achieved by the use of dispersion images. Theoretical prediction and experimental results show consistency. We also show that only the behavior of SPs from the front side is impacted by the deposition of Langmuir-Blodgett dielectric films.In chapter 6, we construct a diffraction grating that has a fixed pitch and several amplitudes on its surface by using interference lithography. The purpose of this work is to examine how the amplitude impacts the behavior of transmission peaks. Different amplitudes are successfully fabricated by varying development time in the lithography process. We observed that largest (optimized) enhanced transmission peak shows as the amplitude approach a critical value. Transmission is not maximized below or beyond a critical amplitude. We also found that transmission enhancements are strongly affected by the diffraction efficiencies. A maximumenhancement is observed as diffraction efficiency is largest where amplitude reaches the critical value. The experimental results are then compared to the simulation.First, this work demonstrates that diffraction gratings have rich information of SPs. For example, rich optical responses of SPs can be acquired by the chirped grating. For another example, the information about the behavior of SPs can be acquired by tracking first order diffraction spots. All information can be utilized to monitor the thickness of ultra thin films formed on the gratings. Therefore, diffraction gratings represent a flexible and information-rich SPR platform. Second, the transmission peaks (or optical responses of SPs) can be tuned by the topology of the diffraction gratings. The resonant wavelengths of transmission peaks can be tuned by the pitches of gratings; the magnitude of peaks can be maximized by tuning the amplitudes of gratings. The control over transmission peaks allows ones to improve the performance of grating-based SPR sensors. Last, rich yet complex optical responses of SPs from diffraction gratings can be analyzed and indexed by the use of dispersion images. Complex optical responses originate from simultaneous excitations of SPs from metal/air and metal/polymer interfaces. By the use of dispersion images, enhanced transmission from the front side interface (metal/air) and reduced transmission from the back side interface (metal/polycarbonate) can be identified and different modes of SPs can be indexed.
机译:表面等离振子共振(SPR)是探测界面事件的有力工具,因为界面中有效折射率的任何变化都会直接影响沿界面传播的表面等离激元的行为,即电磁波。仅当入射光的模数与界面中SP的模数匹配时,才会生成表面等离子体激元(SP)。 SPR的观察可以通过监视通过Kretchsmann配置的反射或通过纳米结构的图案化基板(例如衍射光栅)的增强透射来实现。对于Kretchsmann配置,SP会与特定频率的入射光发生共振,并导致相应波长处反射光谱的强度降低。对于衍射光栅,观察到在特定波长处透射峰增强,因为SP与入射光的特定能量(eV)共振,并通过光栅的纳米结构隧穿。本文着重于通过改变衍射光栅的拓扑结构来调整SP的行为,通过衍射光栅监视薄膜的厚度,以及使用色散图像来分析SP通过衍射光栅的复杂光学响应。第1章介绍了背景/原理。 SPR的研究,全面的文献综述,传感器应用,SPR光谱响应的控制以及SPR的灵敏度。在第2章中,我们说明了沿其空间位置具有变化的表面拓扑的chi光栅。我们证明了纳米结构的特征(例如音高和振幅)会显着影响增强传输的行为。此外,我们还说明了chi光栅的传感应用,结果表明the光栅是一个灵敏且信息丰富的SPR平台。在第3章中,我们使用了商用DVD衍射光栅作为SPR耦合器。使用带有Bertrend镜头附件的摄像机安装的显微镜来观察增强的透射率。我们证明了该系统无需使用分光光度计就可以监测SPR响应并跟踪一氧化硅膜的厚度。表面等离子体激元是金属/介电界面中自由电子集体振荡的结果。因此,SP与分子共振引起的离域电子的相互作用是复杂的。在第4章中,我们将同时进行实验和仿真工作,以解决这种复杂的相互作用。详细的检查和分析显示非典型的SPR响应。对于p偏振光,观察到了分散曲线的分支和锌酞菁锌的Q带中SP的猝灭。对于p偏振和s偏振光,都可以观察到其他波导模式,并且可以分散来自不同引导模式的波长。衍射光栅可以提供有关SP的复杂光学信息。正面(空气/金属)和背面(金属/基板)同时提供SPR信号。在第5章中,我们使用色散图像分析了由三层(空气/金/聚碳酸酯)组成的不对称衍射光栅产生的SPR的复杂光学响应。我们说明,通过使用色散图像,可以从正面和背面的几个衍射级清楚识别SPR响应。理论预测和实验结果表明一致。我们还表明,仅从正面看SP的行为会受到Langmuir-Blodgett介电膜沉积的影响。在第六章中,我们使用干涉光刻技术构造了在表面上具有固定间距和多个振幅的衍射光栅。这项工作的目的是检查振幅如何影响传输峰值的行为。通过改变光刻工艺中的显影时间,可以成功地制造出不同的振幅。我们观察到,最大(优化)的增强传输峰值显示出幅度接近临界值。在临界振幅以下或以外,传输不会最大化。我们还发现,透射效率受衍射效率的影响很大。当振幅达到临界值时衍射效率最大时,观察到最大增强。然后,将实验结果与仿真结果进行比较。首先,这项工作证明了衍射光栅具有丰富的SP信息。例如,the的光栅可以获取SP的丰富光学响应。对于另一个示例,可以通过跟踪一阶衍射点来获取有关SP行为的信息。所有信息都可以用来监视在光栅上形成的超薄膜的厚度。因此,衍射光栅代表了一个灵活且信息丰富的SPR平台。第二,可以通过衍射光栅的拓扑来调整透射峰(或SP的光学响应)。透射峰的谐振波长可以通过光栅的间距来调节;峰值的大小可以通过调整光栅的振幅来最大化。通过控制传输峰值,可以提高基于光栅的SPR传感器的性能。最后,可以通过使用色散图像来分析和索引来自衍射光栅的SP丰富而复杂的光学响应。复杂的光学响应源自金属/空气和金属/聚合物界面对SP的同时激发。通过使用色散图像,可以识别来自正面界面(金属/空气)的增强传输和来自背面界面(金属/聚碳酸酯)的降低传输,并且可以索引SP的不同模式。

著录项

  • 作者

    Yeh, Wei-Hsun;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号